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Abstract — Theoretical analysis on the Bragg reflection characteristics of
millimeter waves in a periodically plasma-induced semiconductor waveguide
is presented. The plasma is assumed to be generated by light illumination.
Numerical examples are given which show the dependence of the Bragg
reflection characteristics on the length of the plasma-induced section and
on the plasma density. Since the period can be changed by altering the
illumination pattern, this type of periodic structure may be developed to
tunable filters or tunable DBR oscillators for millimeter-wave region.

ECENTLY, it has been suggested that high-resistivity

semiconductors such as silicon and gallium arsenide
be used as media for dielectric waveguides in millimeter-
wave integrated circuits [1]). The use of semiconductors
instead of insulators (alumina, for example) for waveguid-
ing media has several advantages: 1) active devices such as
IMPATT diodes can be directly incorporated with the
waveguide, and 2) propagation characteristics of millimeter
waves can be controlled by altering the electron-hole pair
(plasma) density in the semiconductor. With regard to 2),
very recently, Lee et al. [2] and Ogusu et al. [3] have
examined to control the propagation characteristics of
millimeter waves in a rectangular semiconductor waveguide
making use of optical injection of plasma by illuminating
the waveguide with above-bandgap radiation. In these
papers, they have analyzed a semiconductor waveguide on
whose surface plasma is induced uniformly along the prop-
agation direction of millimeter waves, and have aimed at
the application to optically controlled millimeter-wave
phase shifters, switches, and modulators.

In this paper, we assume that a semiconductor slab
waveguide is illuminated periodically in the direction of
millimeter-wave propagation [4]. For such a periodic struc-
ture, we analyze theoretically the Bragg reflection char-
acteristics of millimeter waves. The results obtained will be
useful for designing tunable filters and tunable distributed
Bragg reflector oscillators [5] for millimeter-wave region.

Manuscript received July 16, 1985; revised November 22, 1985.

The authors are with the Department of Communication Engineering,
Faculty of Engineering, Osaka University, Yamada Oka, Suita, Osaka
565, Japan

IEEE Log Number 8407180.

II. UNIFORMLY PLASMA-INDUCED SEMICONDUCTOR
WAVEGUIDES

In this section, we describe the propagation characteris-
tics of TE modes in a uniformly (along the propagation
direction) plasma-induced semiconductor waveguide. Time
dependence of the fields is assumed to be exp( jwr).

Fig. 1 shows the two-dimensional model of the semicon-
ductor waveguide. It is assumed that the fields have no
variation in the y direction and propagate in the z direc-
tion with the factor of exp(— jBz). Relative permittivity
and the thickness of the semiconductor slab are €, and d,
respectively. €, is a real quantity because the semiconduc-
tor is assumed to be intrinsic with very high resistivity. The
lower surface of the semiconductor slab is illuminated with
above-bandgap radiation and the plasma of uniform den-
sity is assumed to be induced in the region 0 <x <7,
Although it is desirable to treat a open-type waveguide for
the application to millimeter-wave integrated circuits, we
are concerned with the structure having two perfect-con-
ducting walls above and below the semiconductor slab to
avoid the complexity in analyzing the discontinuity prob-
lem due to the continuous nature of spectrum of open-type
waveguides. The spacing between the semiconductor slab
and the perfect-conducting walls is 4.

Complex permittivity of the plasma-induced region 0 <
x <t,1s given by [2]

2
€, =€~ Y -

) v
1 R
wz+v2(1 jw)
1=g’h I

where

n, ¢, €y, ¥, and m, are plasma density, the elementary
charge, permittivity of the free space, collision frequency,
and effective mass of carrier, respectively. The subscripts e
and 4 to » and m refer to electron and hole, respectively.
For silicon, €, =11.8, », = 4.53X 1012 s71 », = 7.71 X 10"
s~ m,= 0259 my, and m, = 0.38 m, (m, is the electron
rest mass) [3]. These values are used in all the numerical
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Fig. 1. Two-dimensional model of the plasma-mduced semiconductor
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Fig. 2. Loci of the lowest two roots of the characteristic equation with
varying the plasma density ».

calculations through this paper. In the frequency region
around 50 GHz, the collision frequency », is larger than
the angular frequency w of the electromagnetic fields about
by an order, so the imaginary part of ¢, is mainly to be
controlled by changing the plasma density n.

Characteristic equation of TE modes supported by the
structure shown in Fig. 1 is given by

kP
1— T tank htank,t,

a

1 1
-{———tanka(h —d)+ ———tankd(d—tp)}
k k,

a

1 1
+ (k_ tank,t, + T tan kah)
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{1—1—{—tankd(d t,)tank (k- d)} =0 (la)
(“’zfoﬂo )1/2 (1b)

(wzeopoe - )1/2 (1c)

kp= (wzeopoep —B2)1/2 (1d)

where p, is permiability of the free space. Fig. 2 shows the
loci of the first two roots of equation (1) with varying the
plasma density n from zero to infinity. Both roots start
from the points © on the axes which indicate the values
for the zero plasma density » =0, and after once leaving
the axes, again approach to the axes with increasing the
plasma density and end in the points a. The values indi-
cated by A can be also obtained by solving the characteris-
tic equation with the plasma region replaced by the perfect
conductor.
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Fig. 3. Normalized field distributions of the dominant mode. (4 =1

mm, d = 0.7 mm, t, = 0.05 mm).
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Fig. 3 shows the normalized electric field distributions of
the dominant mode for three different values of n. Al-
though it may be seen in this figure that the dominant-mode
propagation is much affected by the presence of the two
perfect-conducting walls, the value of propagation constant
of the dominant mode, by which the center frequency in
Bragg-reflector application is mainly determined, differs
within 1.8 percent in relative value from the value for
h=c0. For n=102? and 10 m™3, the electromagnetic
fields remain in the lossy plasma region as seen in Fig. 3(a)
and (b), causing the large attenuation of the dominant
mode. For n =10 m~3, however, very little portion of the
field exists in the plasma region as seen in Fig. 3(c), so the
dominant mode suffers little loss. Therefore, using the
optical illumination whose intensity is high enough to
produce dense plasma as in Fig. 3(c), we can control
millimeter-wave propagation by switching on or off the
illumination without suffering large losses.

III. DiscoNTINUITY PROBLEM

In this section, we present the analysis of the scattering
problem at a discontinuous junction between intrinsic and
plasma-induced semiconductor waveguides. The results will
be employed to analyze a periodic structure in the later
section.

Let the mth order mode of unit amplitude be incident
upon the discontinuity between waveguide a (intrinsic
semiconductor waveguide) and b (plasma-induced semi-
conductor waveguide) from waveguide ¢ as shown in Fig.
4. The transverse components of the total electromagnetic
fields in waveguides a and b at the discontinuity plane
(z =0) can be approximately expressed in terms of finite
number of eigenfunctions of waveguide a and b, respec-
tively, as follows:

N
E{"(x) =E)(x)+ X RE(x)
i=1 .

1 N
HE) = - o | BB~ T RACES ()
0

i=1

N
E{"(x)= X TEP(x)
=1

1 N
H{"(x) =~ P Y. TBPEP (x)
Q=1
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Fig. 4. Discontinuous junction between intrinsic and plasma-induced
semiconductor waveguides.

where

E{P)(x) -eigenfunction of the ith mode in waveguide p
(p=a,b),

B propagation constant of the ith mode in wave-
guide p (p=a,b),

R, reflection coefficient to the ith mode in wave-
guide a,

T, transmission coefficient to the ith mode in
waveguide b,

N number of modes in the field expansion in

each waveguide,

and each eigenfunction is normalized according to

d+h o pya .
f |[E P|1“dx =1, i=1~N, p=a,b.
—h -

Next, the mean-square error to the boundary condition at
the discontinuity plane is defined as [6], [7]

(Lot

E®) dx de}H(“)—H“’)[ dx

[ i ax

(2)
The condition for which F becomes minimum is given by
aF oF

=0 =0
dR* AT

i=1~N

resulting in a set of linear equations

reE-e) e

where D, (i, j =1,2) are matrices of order N, C, (i=1,2)
are column vectors of N components, and

R = [R17R27' ’ '7RN]’

T=[T,T,, -, Ty]".

The detailed expressions for the elements of D, ,and C, are
given in Appendix. By solving (3), reflection and transmls-
sion coefficients in case of the mth mode incidence from
waveguide a can be obtained. Those coefficients in case of
the mth mode incidence from waveguide b can be also
obtained in a similar way.

Table I shows numerical examples for the minimum
value of F which is given by substituting the solution of (3)
into (2). The minimum value of F decreases monotonically
to zero with increasing the number of modes N.

TABLEI
NUMERICAL EXAMPLES FOR THE MINIMUM VALUE OF F (4 =1 mm,
d=0.7mm, t,=0.03 mm, n=102* m~?)

F ( dominant mode incidence F ( dominant mode incidence
N from waveguide a ) from waveguide b )
5 8.095 % 6.111 %
10 4.132 2.577
20 1.909 1.145
40 0.802 0.452
80 0.290 0.158
160 0.163 0.090

IV. PERIODICALLY PLASMA-INDUCED
SEMICONDUCTOR WAVEGUIDES

A. Reflection Coefficient from the Periodic Structure

Fig. 5 shows a periodically plasma-induced semiconduc-
tor waveguide which consists of cascaded discontinuous
junctions. Although an infinite number of modes are ex-
cited at each discontinuity, all of the modes do not interact
appreciably with adjacent discontinuities. The number of
modes which cause appreciable interaction with adjacent
discontinuities (these modes are called “accessible modes”
[8]) is assumed to be M, and M, in the waveguide a and
b, respectively.

Equation (3) is solved M, + M, times with each of the
accessible modes taken to be incident upon the discontinu-
ity. Each solution has the form of a column vector of 2N
components. After truncating the each solution to a col-
umn vector of M, + M, components, they can be arranged
as vectors in a matrix form. Then, we obtain the scattering
matrix S of order M, + M, between accessible modes. The
following relation holds.

S )

a)la) s (3

B B S, Sy,

where A* (B*) are column vectors of M, (M) compo-
nents consisting of complex amplitudes of the lowest to
M th (M,th) order eigenmodes traveling in + z directions
in Wavegulde a(b), and Sy, S,, S,;, and S,, are matrices
of M, XM, M, XM, M, XM, and M, X M,, respec-
tively. The transfer matrix of a umt cell of the periodic

structure shown in Fig. 6 can be expressed in terms of S,
(1, j=1,2)

(A+ (Ab) -G AT (—Aa) Gé(Gll G,
A~ (Ab) A~ (—Aa) ' Gzl Gzz
n=(P-QP 'Q)D,, =QP D!

GZl=—|F°_1Q[Da, 622=P_1|D;1
P = Su(Db_l _822Db§22)_1§21
Q=S +§12(D;1 ‘Szznbszz) _1§22Db§21
D, =diag [exp ( - jB{”)Aa),
exp(— jB§VA, ), -, exp(— jBSHIA, )]
Db=diag[exp( JBA,),
exp(— j,82<b’Ab),- . -,exp(—— j,BJ{}’h)Ab)]
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Fig. 5. Periodically plasma-induced semiconductor waveguide.
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Fig. 6. Unit cell of the periodic structure.

(diag[ ] means a diagonal matrix whose diagonal ele-
ments are given in the bracket.) where A, and A, are the
length of a section of waveguide a and b, respectively. The
transfer matrix of the periodic structure consisting of N,
unit cells is given by G™. The reflection coefficient of the
dominant mode from the structure can be calculated by

= _(B=18
r=- (Gzz G21)11
where G, , are submatrices of order M, of G™ as

GN 2 Gy, Gl2)

GZl GZZ

B. Numerical Results

Fig. 7(a) and (b) show the reflection coefficients of the
dominant mode from a pair of discontinuities depicted in
the insets of the figures as functions of the assumed
number of the accessible modes M, and M,. Distances
between the two discontinuities A, and A, serve as
parameters. The number of expansion modes N in the
analysis of an individual discontinuity is chosen to be 50 in
all the numerical calculations in this section. It can be seen
in Fig. 7(a) and (b) that the convergence of the reflection
coefficients with increasing M, and M, is slower for
smaller distances A, and A, respectively. That is, larger
number of modes interact appreciably with adjacent dis-
continuities for smaller distance between the discontinui-
ties. Using these figures, we can determine the number of
accessible modes in each section of waveguide a and b for
particular values of A, and A, of the periodic structure to
be analyzed.

Fig. 8 shows the Bragg reflection characteristic of the
periodic structure: A=1 mm, d = 0.7 mm, t,= 0.03 mm,
n=10>* m=3 A, ,=A,=068 mm, N,=20. For this
waveguide dimension, the number of propagation modes is
only one in each section of waveguide a and b. (Since the
propagation constants B of eigenmodes in waveguide b
have complex values, we cannot classify these modes into
propagation and evanescent modes. However, the modes
whose B satisfies the inequality Re[8]> Im[B] may be
regarded as a propagation mode.) In this figure, we also
show the Bragg reflection characteristic for 4 =2 mm to
examine the influence of the presence of perfect-conduct-
ing walls. In this case, the dominant-mode propagation
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constant at 50 GHz differs within 0.06 percent from that of
the open-type structure. Bragg reflection characteristics for
h=1 mm and /=2 mm are qualitatively the same, which
indicates that we can infer to a considerable extent the
Bragg reflection characteristics of the open-type structure
from those for h =1 mm.

In Fig. 8, it should be noted that considerable reflection
occurs in the low frequency region of 38-48 GHz com-
pared with the high frequency region of 55-63 GHz. The
reason seems to be as follows: reflected power by a discon-
tinuity is large in the low frequency region near the cutoff
frequency of the dominant mode in waveguide b, and the
incident power of the dominant mode cannot penetrate
deep into the periodic structure, so that the reflected waves
from discontinuities do not cancel each other effectively in
this frequency region. The amount of reflected power per
unit cell can be decreased by shortening the length of the
plasma-induced section A,. This is also desirable in view
of saving energy of illumination to generate the plasma.
Fig. 9 shows the Bragg reflection characteristic for A ,=1.13
mm and A,=0.03 mm. Reflected power in the low
frequency region is reduced compared with Fig. 8.
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Fig. 10. Dependence of Bragg reflection characteristics on the plasma
density n. (h =1 mm, d = 0.7 mm, ¢, = 0.03 mm, N, = 20).

Fig. 10 shows the dependence of Bragg reflection char-
acteristics on the plasma density in waveguide b. The peak
value of reflected power is larger for higher plasma density.
This is mainly because the dominant mode in waveguide b
suffers smaller losses by the plasma for higher plasma
density as stated in Section IL.

To conclude this section, we make an estimation of the
value of optical intensity required for device operation.
Assuming that all of the optical energy is absorbed in the
semiconductor and that the quantum efficiency is 100
percent, we can estimate optical intensity required to pro-
duce the steady-state plasma layer of density » and thick-
ness ¢, by

B ho,y,nt,

T

where 7, w,,, and 7 are Plank’s constant divided by 27,
angular frequency of the optical radiation, and lifetime of
the plasma, respectively. The value of I for A, =
27/ (wopi/€otto) = 0.9 pm, n=10** m~>, ,=0.03 mm,
and 7=2 us [4] is calculated to be 3.3X102 W /cm?. To
realize a Bragg reflector whose width (in the y direction in
Fig. 1), A,, and N, are 3 mm, 0.1 mm, and 20, respec-
tively, total optical power of 20 W is required. Although
this value of optical power would be achieved by a N;:YAG
laser system, it is somewhat large to be provided by pre-
sent-day semiconductor lasers [9]. In above estimation,
steady-state thickness of the plasma layer is taken to be 30
pm which is approximately equal to optical penetration
depth. In reality, however, the volume of the plasma-oc-
cupied region expands by carrier diffusion (ambipolar dif-

fusion length in silicon is about 67 pm for 7=2 pus at
300K) so that more optical power will be required than
estimated above. In order to confine the plasma in a thin
layer, a structure of a dielectric waveguide covered with a
thin semiconductor layer [10] will be preferable.

V. CONCLUSIONS

We have analyzed theoretically the Bragg reflection char-
acteristics of millimeter waves in a periodically plasma-
induced semiconductor waveguide assuming that a semi-
conductor slab is illuminated periodically with above-
bandgap radiation. Some numerical examples are pre-
sented which show the dependence of the Bragg reflection
characteristics on the length of the plasma-induced section
and on the plasma density. In this paper, we have analyzed
only the case of TE polarization. Calculation for TM
polarization is now in progress.

The analysis in this paper assumes the presence of
perfect-conducting walls above and below the semiconduc-
tor slab. However, if the spacing between the perfect-con-
ducting walls and the semiconductor slab is not extremely
small, the propagation characteristics of the dominant mode
of the closed-type structure are nearly identical to those of
the open-type structure. Hence, most of the results ob-
tained in this paper can be also applied to the open-type
structure apart from the influence of radiation losses.

Since the periodic loading with light-induced plasma
treated in this paper is not permanent, this type of periodic
structure can be developed to operate as tunable filters or
tunable DBR oscillators for millimeter-wave region, al-
though in order to produce a steady-state high-density
plasma we need to solve problems of obtaining a high-power
light source and of excess heating of the material.

Finally, it is mentioned that the analysis method and the
results presented in this paper can be also applied to the
case of periodically heavily doped semiconductor wave-
guides.

APPENDIX

The elements of D,, and C, in (3) are given by

BB\ aen

- 5 P (@) (a)*

(Dll)lj_ (1+ lﬁ(a)‘2 ‘/7h E)’J E_w dx
1B

),

— o b a)*
(Dlz)u* 1 Iﬁrgla)lz a E)Ej)E}(.l dx
(DZI)Uz (Dlz ;l:

(B22),, = |1+~ fﬁh EPE®” dx
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where §;; is the Kronecker delta. It should be noted that
the eigenfunctions of waveguide b are not orthogonal
among each other because it contains a lossy medium.
Hence the matrix D,, is not a diagonal one as D;.
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